经济类 “高等数学”学生课程论文说明表(一)( 二 )


2.3 《易经》方法中的数论问题,其实是一个与数有关的活动,方法确实是一个计算活动 。圣餐有很多种形式,现在让我们来分析一种圣餐 。2.3.1《周一笑法》介绍 将49株蓍草随机分成两堆,然后将其中一堆取出,剩余两堆蓍草分为one 把地分组,去掉小于4的余数(如果没有余数,则计算余数为余数4),所以把已经取出的那个相加,去掉根蓍草,剩下的4440根,这个过程叫做“一变同” 一个改变剩余的蓍草,重复上述过程,剩下的40、3<@6、或32个蓍草称为“两变” 。对剩余的蓍草重复上述过程,剩下的3<@6、32、28 24蓍草,称为“三改” 。四个数字之一 。如果得到9或7,则称为阳耀,用“-”表示;如果得到 8 或 6,则称为印尧周易术数学原理,用“--”表示 。就这样,“三变”决定了一个姚 。这个过程重复六次,得到6个八卦,确定一个卦 。六芒星的运算就完成了 。《八卦》中的卦,预测占卜行为的好、坏、悔、悲等 。每个卦有六个卦,卦是摇卦得来的周易术数学原理,规定卦只能摇一次 。@二、第三次摇卦 。顺序是从下到上 。2.3.2《周一孝法》与一全等关系 《周一》卦形法与一全等有关 。同余论属于“数论”的范畴,是一种关于数可分性的符号语言 。
【经济类 “高等数学”学生课程论文说明表(一)】
经济类 “高等数学”学生课程论文说明表(一)
同余定理:(孙子定理)如果m是自然数,如果(ab)是m的倍数,则称为b(modm),意思是:a-bmk(k是整数) 。64 《易经》中卦形成的巧妙方法是将49个蓍草用三种方式转化为21个,得到以下四种可能的数字之一:49=36, 48=32, 47=21, 46 =24 。这一定是《易经》作者通过精确的数学运算和反复试验得出的巧妙构思 。这种巧思,从数学的角度来看,正是数论同余论的思想 。周易中的分区就是不断重复以下两个操作:操作一:操作二:我们可以认为,《易经》中的卦象是同余公式的基础,而孙子定理发展了这一理论 。2.4 《易经》中河图、洛书的数学奥秘有“天悬于天”、“河生图、洛生书、圣人法则”之说它” 。2.4.1 河图的由来 关于“河出图”,据说伏羲一族征服了世界,黄河上的一头龙马载着一幅画作为礼物送给他 。天地数之和为55 。东、西、南、北都是奇偶(阴阳)数相配,形成天地数 。天地总数是55,也就是八卦中的大衍数 。河图外数,阳线9、7;阴线 8 匹配阴阳线: 9+<@6、8+6 和为 15,而 15 是一个神秘的数字 。2.4.2 相传,大禹治水的时候,一只乌龟从洛水里跳了出来,背着一张献给大禹的画 。这幅画叫做《洛书》 。九,大禹因之成就九域,世间大法 。
经济类 “高等数学”学生课程论文说明表(一)
“河图”用青色书写,“洛书”用红色书写 。白点代表阳:1、3、5、7、9 黑点代表阴:2、4、<@6、8 。洛书可译为数九宫格 。后来研究了“河图”和“洛书” 。既然用十进制代替二进制计数是一个很大的变化,就必须普及和使用,于是便诞生了“和楚图图”、“洛楚书”等美丽的传说 。九宫图又称纵横图,西方人称其为魔方 。一开始纯粹是游戏,没有什么实用价值,历史上还夹杂着迷信 。2.4.3 洛书和魔方 魔方定义:一个由 n 个不同整数的平方组成的方阵,使得沿任何行、列以及主对角线和次对角线的 n 具有相同的和 。统一的数称为“幻方常数” 。“洛书”翻译成今天的象征文字是“三阶魔方” 。这个小魔方蕴含着无穷无尽的数字和奥术:古今研究易经的人不计其数,很多人把河图和洛书当成魔方,因为河图和洛书既抽象又复杂 。具体来说,数学的变化层出不穷,以至于很多人都着迷于探索其中的奥秘,以赶上时代的步伐 。数学,作为自然科学的女王,是科学技术发展的基础,也是人类征服自然的有力武器 。在《易经》丰富多彩的科学宝库中,数学是一颗闪耀千年的璀璨明珠 。


以上关于本文的内容,仅作参考!温馨提示:如遇专业性较强的问题(如:疾病、健康、理财等),还请咨询专业人士给予相关指导!

「辽宁龙网」www.liaoninglong.com小编还为您精选了以下内容,希望对您有所帮助: