神经网络控制的书籍目录( 二 )


4.5.2递推预报误差算法
4.6非线性系统逆模型的神经网络辨识
4.6.1系统分析逆过程的存在性
4.6.2非线性系统的逆模型
4.6.3基于多层感知器的逆模型辨识
4.7线性连续动态系统辨识的参数估计
4.7.1Hopfield网络用于辨识
4.7.2Hopfield网络辨识原理
4.8利用神经网络联想功能的辨识系统
4.8.1二阶系统的性能指标
4.8.2系统辨识器基本结构
4.8.3训练与辨识操作
4.9小结
习题与思考题
第5章人工神经元控制系统
5.1人工神经元的PID调节功能
5.1.1人工神经元PID动态结构
5.1.2人工神经元闭环系统动态结构
5.2人工神经元PID调节器
5.2.1比例调节元
5.2.2积分调节元
5.2.3微分调节元
5.3人工神经元闭环调节系统
5.3.1系统描述
5.3.2Lyapunov稳定性分析
5.4人工神经元自适应控制系统
5.4.1人工神经元自适应控制系统的基本结构
5.4.2人工神经元自适应控制系统的学习算法
5.5人工神经元控制系统的稳定性
5.6小结
习题与思考题
第6章神经控制系统
6.1神经控制系统概述
6.1.1神经控制系统的基本结构
6.1.2神经网络在神经控制系统中的作用
6.2神经控制器的设计方法
6.2.1模型参考自适应方法
6.2.2自校正方法
6.2.3内模方法
6.2.4常规控制方法
6.2.5神经网络智能方法
6.2.6神经网络优化设计方法
6.3神经辨识器的设计方法
6.4PID神经控制系统
6.4.1PID神经控制系统框图
6.4.2PID神经调节器的参数整定
6.5模型参考自适应神经控制系统
6.5.1两种不同的自适应控制方式
6.5.2间接设计模型参考自适应神经控制系统
6.5.3直接设计模型参考自适应神经控制系统
6.6预测神经控制系统
6.6.1预测控制的基本特征
6.6.2神经网络预测算法
6.6.3单神经元预测器
6.6.4多层前向网络预测器
6.6.5辐射基函数网络预测器
6.6.6Hopfield网络预测器
6.7自校正神经控制系统
6.7.1自校正神经控制系统的基本结构
6.7.2神经自校正控制算法
6.7.3神经网络逼近
6.8内模神经控制系统
6.8.1线性内模控制方式
6.8.2内模控制系统
6.8.3内模神经控制器
6.8.4神经网络内部模型
6.9小脑模型神经控制系统
6.9.1CMAC控制系统的基本结构
6.9.2CMAC控制器设计
6.9.3CMAC控制系统实例
6.10小结
习题与思考题
第7章模糊神经控制系统
7.1模糊控制与神经网络的结合
7.1.1模糊控制的时间复杂性
7.1.2神经控制的空间复杂性
7.1.3模糊神经系统的产生
7.2模糊控制和神经网络的异同点
7.2.1模糊控制和神经网络的共同点
7.2.2模糊控制和神经网络的不同点
7.3模糊神经系统的典型结构
7.4模糊神经系统的结构分类
7.4.1松散结合
7.4.2互补结合
7.4.3主从结合
7.4.4串行结合
7.4.5网络学习结合
7.4.6模糊等价结合
7.5模糊等价结合中的模糊神经控制器
7.5.1偏差P和偏差变化率Δe的获取
7.5.2隶属函数的神经网络表达
7.6几种常见的模糊神经网络
7.6.1模糊联想记忆网络
7.6.2模糊认知映射网络
7.7小结
习题与思考题
第8章神经控制中的遗传进化训练
8.1生物的遗传与进化
8.1.1生物进化论的基本观点
8.1.2进化计算
8.2遗传算法概述
8.2.1遗传算法中遇到的基本术语
8.2.2遗传算法的运算特征
8.2.3遗传算法中的概率计算公式


以上关于本文的内容,仅作参考!温馨提示:如遇专业性较强的问题(如:疾病、健康、理财等),还请咨询专业人士给予相关指导!

「辽宁龙网」www.liaoninglong.com小编还为您精选了以下内容,希望对您有所帮助: